
Andrew Coppin wrote:
>> 7 is a number. 7 is an integer, and integers are numbers.
>
> 7 is not a field. 7 is an element of [at least one] field, but 7 itself
> is not a field.
>
> 7 is not a group.
Why not? It might be useful to use the notation '7' for the cyclic group
with 7 elements.
> 7 is a member of the set of integers, but the set of
> integers is not a group either. The set of integers form a group when
> taken together with the addition operator. (And, actually, forms
> another, different, group when taken with the multiplication operator.)
The integers endowed with the usual multiplication is not a group. (The
only invertible elements of this monoid are 1 and 1.)
> Now, here's the question: Is is correct to say that [3, 5, 8] is a
> monad?
In what sense would this be a monad? I don't quite get your question.
Cheers, Jochem

Jochem Berndsen  [email protected]
_______________________________________________
HaskellCafe mailing list
[email protected]
http://www.haskell.org/mailman/listinfo/haskellcafe

